Retinal Manifestations of Systemic Disease

Steven Ferrucci, OD, FAAO
Chief, Optometry Sepulveda VA
Professor, SCCO/MBKU

Retinal Plaques
• Several different types of plaques can often be visualized in the retinal vasculature
• Pt is typically elderly, has HTN, CAD, hypercholesterolemia/hyperlipidemia, and/or atherosclerotic disease
• Often totally asymptomatic and found on routine exam

RISK FACTORS
• Age
• HTN
• Vascular disease
• Past vascular surgery
• SMOKING
• High TOTAL cholesterol
• Men> women

Prevalence
• Beaver Dam Eye Study: 1.3%
 • smoking, HTN and DM
 • 9x more likely after age 75 vs. 43-54
 • after 75, 3.1% prevalence
 • Equates to 1.2 million people with emboli 43-86
 • >450,000 are 75-86
 • Fatal stroke 3x as likely over 8 years in pts with emboli, adjusting for other factors
• OD>OS
• Bilateral very infrequently

Prevalence
• Blue Mountain Eye Study: 1.4%
 • HTN, smoking, Vascular disease
• LA Latino Eye Study: 0.4%
 • Smoking, CAD, h/o MI, HTN
• Singapore Eye Study: 0.6%
 • Smoking, high cholesterol, h/o angina

Retinal Plaques
• May present with amarosis fugax, transient episodes of monocular blindness
• Rarely, may report transient ischemic attack (TIA), which is above with hemiparesis, parasthesia or aphasia
Retinal plaques

• Three different types of plaques, but all share strong association to significant cardiovascular disease
 – HH 80% > fibrino-platelet 14% > calcific 6%

Retinal Plaques

• Cholesterol (Hollenhorst) plaque
 – Most common
 – Shiny yellow-orange in appearance
 – From plaque in the ipsilateral carotid artery
 – Rarely causes occlusion, unless multiple
 – Typically occurs at bifurcations
 – Mobile in nature

Retinal Plaques

• Fibrino-platelet
 – Appear as dull white to gray, long plugs
 – Typically within arterioles, not at bifurcations
 – May break-up and dissolve with time
 – May lead to BRAO or CRAO
 – Often associated with carotid disease or mitral valve insufficiency

Retinal Plaques

• Calcific
 – Appears more whitish than HH
 – Dull, non-reflective, white
 – Classically within arteriole, not at bifurcation
 – Typically immobile
 – Most dangerous, often cause BRAO
 – Often from cardiac atheromas of heart valves

Retinal plaques

• Talc retinopathy
 – Represents an exogenous plaques as opposed to others
 – Appears typically as multiple shiny yellow plaques within capillaries in posterior pole
 – Typically smaller than other plaques
 – Typically seen in IV drug users
 – Rarely cause complications, but reported cases of associated NV and occlusions

Retinal plaques

• No direct management of plaques is needed
• Management is aimed at discovering source of embolus to decrease risk of other emboli, occlusion, or stroke
• Pts need referral to internist for complete physical
Retinal Plaques
- Assess risk factors with PCP
 - DN, HTN, lipid panels
- Carotid ultrasound
- MRA: non-invasive image with 2D/3D
- TEE: invasive, probe into esophagus to image heart valves
 - Helpful with calcific
- CTA: CT scan of arteries construct 3D images

Carotid Ultrasound
- First line screening test
- ORDER WITHIN TWO WEEKS!!
- Identifies flow rate and % stenosis
- Common, internal, and external
- Only ~20% of asymptomatic emboli will have significant carotid stenosis

Retinal Plaques
- **<50-60% occlusion**
 - ORAL TREATMENT
 - Anti-Platelet
 - ASA
 - Anti-coagulation
 - Comadin, platelet
 - Cholesterol meds
 - >70-99%
 - SURGICAL TREATMENT
 - Carotid endarterectomy
 - Angioplasty
 - reduces risk of future stroke!

Retinal Vein Occlusions
- BRVO
 - Second most common retinal vascular disorder
 - Often associated with systemic HTN
 - Peak incidence in 5th to 6th decades, with no sex predilection
- CRVO
 - Very visually destructive disease with strong systemic association
 - Typically occurs in men > 50
 - Vision is typically compromised, ranging from moderate to total vision loss

Is it worth working up these patients?
- 18% of pts with retinal emboli had internal or common carotid stenosis>75%
- Higher incidence of stroke
 - 8.5% with emboli vs 0.8% w/o per year
- Pts with cholesterol HH emboli have 15% mortality at 1 yr, 29% by year 3, and 54% by 7 years
Retinal Vein Occlusions

BRVO
- Classic presentation is dilated tortuous veins and dot-blot hemes from site of compression to periphery in sector normally drained by that vein
- Can also see flame-shaped hemes and cotton wool spots as hypoxia develops
- Lipid can also develop leading to macula edema

CRVO
- Non-ischemic characterized by dot/blot hemes, intra-retinal hemes, and possible macula edema
- Ischemic CRVO presents with dot/blot hemes, flame-shaped hemes, CWS, and gross intra-retinal and macula edema. Also, papillidema commonly present

Ischemic vs non-ischemic CRVO

- IOP often reduced more with ischemic vs. ischemic CRVO
- APD often present with ischemic
- VA generally reduced more with ischemic
 - Rule of thumb: if VA < 20/200 then ischemic.
- In order to know for certain, FA needed
 - Helps to stratify risks, prognosis

Traditional Treatment: BRVO

- Branch Vein Occlusion Study Group concluded that grid laser improves visual outcome in eyes with BRVO and vision 20/40 or worse from macular edema
 - BRVO at least 3 months old
 - VA 20/40 or worse
 - FA within 1 month, demonstrating macula edema and absence of foveal ischemia

Traditional Treatment: CRVO

- Patients with macular edema from CRVO typically do not respond well to FML at all
- CVOS Study: Improvement on appearance, but no gain in acuity
- Big concern is risk for NVG
 - NVG in 14-20% of all CRVO
 - NVG almost 60% of the time in ischemic CRVO

BRVO/CRVO

- Management includes diagnosis and management of underlying etiology
- Most often associated with DM and HTN
- However many other possible etiologies
 - Carotid artery disease
 - Hyperlipidemia/hypercholesterolemia
 - Altered platelet function
 - Coats disease
 - Von-Hippel Lindau
 - Eales’ disease
 - Trauma
BRVO/CRVO

- At minimum, should have
 - BP evaluated
 - Fasting Blood sugars (FBS)/A1c
 - CBC
 - Lipid profile

- Additional tests might include
 - Carotid artery evaluation
 - Cardiac evaluation
 - Additional blood tests
 - ANA
 - RF
 - FTA/ABS
 - ESR

New Treatments: Steroids

- CRVO SCORE
 - ¼ patients receiving IVT had a 15 letter or better improvement in VA at 12 months
 - Pts 5x as likely to have VA improvement vs. observation alone

- BRVO SCORE
 - Almost equal number of patients in laser or steroid group had > 15 letter improvement
 - More complications in IVT group

New Treatments: Anti-VEGF

- CRUISE (CRVO) Study:
 - Vision improved > 15 letters in almost 50% of patients vs. 17% with sham at 6 mos
 - Mean VA gain of almost 15 letters

- BRAVO (BRVO) Study:
 - Vision improved > 15 letters in over 60% of patients vs. 28% with sham
 - Mean VA gain of approx 18 letters
 - Few side effects in either group

Elyea® (afilbercept)

- FDA approved Sept, 2012 for treatment of macula edema secondary to CRVO
- COPERNICUS and GALILEO studies:
 - % of pts gaining 15 letters or more of BCVA
 - Injection q 2 mos for 24 weeks
- COPERNICUS:
 - 56% vs. 12% with sham
 - 17.3 letters gained vs. 4.0 lost with sham
- GALILEO:
 - 60% vs. 22% with sham
 - 18.0 letters gained vs. 3.3 lost with sham

Ozurdex®

- 0.7 mg biodegradable intravitreal dexamethasone insert
- FDA approved for macula edema from BRVO/CRVO
- 853 patients
 - 20-30% gained ≥ 3 lines vs. 7-12% with sham at 6 mos
 - 7.4 mean letter gain vs. 4.9 with sham at 6 mos

CRVO

Most common etiologies varied with age at presentation

- Under age 50
 - Head injury
 - Hyperlipidemia
 - Estrogen, esp. oral contraceptives

- Over age 50
 - HTN
 - DM
 - Chronic lung disease
BRVO/CRVO Treatment

<table>
<thead>
<tr>
<th>Traditional</th>
<th>Now</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Wait and see</td>
<td>• No advantage to wait</td>
</tr>
<tr>
<td>– 3 mos</td>
<td>– 1 week</td>
</tr>
<tr>
<td>– 20/40 or worse</td>
<td>– VA loss?</td>
</tr>
<tr>
<td>• Laser for BRVO</td>
<td>• Anti-VEGF for BRVO</td>
</tr>
<tr>
<td>• No Tx CRVO</td>
<td>• Anti-VEGF for CRVO</td>
</tr>
<tr>
<td>• Evaluate underlying disease</td>
<td>• Evaluate underlying disease</td>
</tr>
</tbody>
</table>

BRVO

- Result of emboli dislodged from elsewhere which travels through the system until a vessel too small for passage is reached
- Arterial occlusion causes anoxia due to lack of oxygenated blood
 - Anoxia causes loss of retinal layers, including NFL through inner nuclear layer

CRAO

- Mechanism similar to BRAO, but larger embolus causes obstruction prior to laminar cribosa, so entire central retinal artery is obstructed
- Pts typically present with sudden painless loss of vision in an eye that was previously thought to be healthy
- Typically pts from 50-80 years of age

BRAO

- Occurs most frequently in superior temporal region of the retina
- Visual acuity and field loss dependent on location and extent of blockage
 - VF loss is classically
 a sharp edged defect
 stopping abruptly
 at the horizontal raphe
- Appearance varies as time progresses
 - Initially, affected arteries narrow and retina becomes hazy
 - Over a few hours, the retinal tissues whitens and appears edematous
 - Segmental optic atrophy may also develop in the affected area

BRAO

- Prognosis depends upon area affected as well as extent of blockage
- Also depends upon prompt therapy, to lesser extent
 - Some studies indicate that if emboli can be dislodged within 1-2 hours, recovery can be complete
 - After this period, initial acuity is not likely to improve
CRAO

- Vision typically in the hand motion to counting fingers range
- Most often present with an APD as well
- If a cilioretinal artery is present, there may be a small island of vision that correlates to the area of vascular supply
 - Present in about 10% of eyes
- Can see an embolus in 20-40% of cases

CRAO

- Early appearance is that of retinal narrowing and haziness of retinal tissue
- After 1-2 hours, retina appears white and edematous, with a "cherry red" macula, representing the choroidal blood supply to the macula
- With time, the arteries may assume a more normal appearance, with irregular narrowing often the only clue
- Optic atrophy may occur, but NVG is very rare

CRAO

- Management often includes attempts to dislodge embolus if pt presents within first 1-2 hours
 - Digital massage, paracentesis to lower IOP, carbogen, anti-thrombotic agents, etc have little to no value
- Management lies in diagnosis and management of underlying systemic disease

CRAO

- Immediate ESR needed to rule out GCA if pt over 55
 - Only 2%-5% secondary to GCA in one study
- Most often associated with DM, HTN, and carotid artery disease
 - Many other etiologies including: sickle cell, oral contraceptives, Lupus, Bechets disease, Lyme disease, etc

BRAO/CRAO

- Blood pressure
- Lab tests
 - FBS
 - CBC
 - ESR
 - Lipid profile
 - PT/PTT
 - ANA/RF
- Carotid Artery Evaluation
- Cardiac Evaluation
 - Echocardiogram and possible Holter monitor

BRAO/CRAO

- Follow-up
 - BRAO: 3-6 mos after ruling out underlying etiology
 - CRAO: follow closely for first 1-3 mos for NVI, then periodically after
 - If NV, then PRP indicated to prevent NVG