OCT & OCTA RETINAL IMAGING: HOW TO PREVENT “RAGING” GLAUCOMA!

Craig Thomas, O.D.
3900 West Wheatland Road
Dallas, Texas 75237
972-780-7199
thpcckc@yahoo.com

THE ORIGINAL “RAGING” GLAUCOMA

- 47-year-old Black male presenting for a “routine” eye examination
- Intraocular pressures in 2010
 - Right eye -- 14mm Hg
 - Left eye -- 17mm Hg
- 20/20 visual acuity in each eye with low power prescription to treat myopia
- No other risk factors for glaucoma or abnormal clinical signs to suggest the presence of glaucoma
- Previous eye examination with me one year earlier – all results normal

OPTIC NERVE HEAD EXAMINATION

- Wedge-shaped defects of the retinal nerve fiber layer in the left eye
- The TSNIT Curve Profile Analysis superior and inferior retinal nerve fiber layer humps are flattened in the left eye
- Because glaucomatous damage to the retinal nerve fiber layer has a predilection for the inferotemporal and supertemporal regions of the optic disc, focal nerve fiber layer defects in these areas are strongly suggestive of glaucoma

OCT RETINAL IMAGING

- Primary open-angle glaucoma
 - Glaucoma is a multifactorial optic neuropathy characterized by structural changes to the optic nerve head and peripapillary retina that are associated with characteristic functional deficits
 - There is clear evidence that glaucoma is a neurodegenerative disease that affects the brain as well as the eye
 - Glaucoma is associated with the following clinical features
 - Aqueous outflow restrictions
 - Unphysiologic intraocular pressure
 - Abnormal ocular perfusion
 - Abnormal rate of apoptosis
 - Progressive ganglion cell loss
 - Characteristic changes in optic nerve anatomy

Risk Factors for Glaucoma (ICD-10)
- African-American or Hispanic race
- Family history in first-degree relative
- Elevated intraocular pressure
- Abnormal optic disc appearance
- A central corneal thickness below 500 microns
- Combined with elevated intraocular pressure

Additional Risk Factors for Glaucoma
- Diabetes
- Low blood pressure
- Sleeping disorders and Breathing disorders
- Prior trauma to the globe
- Pseudoexfoliation
- Pigment dispersion syndrome

UNPHYSIOLOGIC INTRAOCULAR PRESSURE
- IOP above 22 mmHg as measured by applanation tonometry
- Measurements above 24 mmHg are clinically significant
- 18.85% of the population have IOPs below 24 mmHg
- Increase in IOP over time
- Asymmetry in IOP greater than 5 mmHg
- Diurnal variation greater than 6 mmHg

Corneal Hysteresis and its Relevance to Glaucoma
- Corneal hysteresis is a biomechanical corneal behavior and not a static physical property like corneal thickness
- Low corneal hysteresis is associated with optic nerve and visual field damage in glaucoma and the risk of progressive glaucomatous damage to the visual system

OPEN ANGLE BORDERLINE FINDINGS
A “glaucoma suspect” is a person with clinical findings and/or a combination of risk factors that indicate an increased likelihood of developing glaucoma

AQUEOUS OUTFLOW
- UBM images iris, scleral spur and ciliary body
- Use ultrasound biomicroscopy (UBM) to determine the exact degree of angle closure and assess whether the patient is predisposed to angle closure
- Determine the occludability of the anterior chamber angle

ABNORMAL OCULAR PERFUSION
- Ocular perfusion impairment
 - Decreased optic disc and peripapillary perfusion can be found in eyes with glaucoma
 - Ocular perfusion impairment can be visualized with OCT angiography (OCTA) by measuring retinal vessel density in different regions around the optic disc and the macula
 - Vessel density can be increased by treating glaucoma and the reversal of peripapillary vessel density is associated with higher pre-treatment intraocular pressure and greater post-treatment intraocular pressure reduction

CHANGES IN OPTIC NERVE ANATOMY
- Changes in coloration of the optic nerve
 - Localized pallor is more diagnostic of glaucomatous optic atrophy
- Changes in position of the optic cup
 - Temporal or inferior decentration of the cup is highly suspicious for glaucoma
- Changes in optic cup size
 - Focal enlargement is a positive indicator for glaucomatous optic atrophy
 - Loss of tissue appears as a wedge-like bite taken out of the margin called a “notch”
- Changes in the margins of the optic cup
 - The margin of the cup is typically smooth and slightly rounded
 - Very sharp or heavily-shaped cup margins are suspicious for glaucoma
- Changes in optic cup depth
 - Normal eyes can have deep cups
 - Deep cups that are also wide are more suspicious for glaucoma

PROGRESSIVE GANGLION CELL LOSS
- The retinal nerve fiber layer (RNFL) contains all the ganglion cells
- The structure has a delimited appearance traversing across the major blood vessels and can be seen with ophtalmoscopy
- Loss of vision from glaucoma is the result of axonal damage at the level of the optic disc
- Directly below the papillomacular bundle, the fiber appears altered, as if they were peeled away
- This defect in the RNFL indicates a loss of retinal ganglion cells
- This is a localized, wedge-shaped defect with its apex at the optic disc
CASE REPORT #1

- 50-year-old White male presents for a “routine” eye examination in 2015

- Intraocular pressures
 - Right eye: 24 mm Hg
 - Left eye: 25 mm Hg

- Order OCT retinal imaging and threshold visual field examination

- Diagnosed with ocular hypertension – scheduled to RTC in one year

- Patient returns to the office for another “routine” eye examination in 2018

- Intraocular pressures
 - Right eye: 34 mm Hg
 - Left eye: 25 mm Hg

- Order OCT retinal imaging (RNFL, ganglion cell, angiography) and threshold visual field exam, extended color vision exam, electrophotography, visual evoked potential testing, corneal pachymetry, corneal hysteresis and gonioscopy

VISUAL FIELD EXAMINATION

- 24-2 and 30-2 automated threshold testing patterns
 - 54 points and 74 points, respectively, each six degrees apart
 - 12 points tested within the central ten degrees
 - 4 points tested within the macular region (central eight degrees)
 - 30% of the total retinal ganglion cells
 - 60% of visual cortex area

- In progressive glaucoma, a relationship exists optic disc cupping and changes in the visual field
 - In the majority of patients with glaucoma, there is a functional latency period where structural change occurs early in the natural history of the disease without functional vision loss
 - A minority of patients develop visual field defects before structural defects can be visualized or imaged

OCT RETINAL IMAGING

- Circumpapillary retinal nerve fiber layer thickness
- Neuroretinal rim width
- Ganglion cell inner plexiform layer thickness

FUNDUS EXAMINATION

ANTERIOR CHAMBER EXAMINATION
No glaucomatous visual field defects are revealed with threshold perimetry.

RETINAL NERVE FIBER LAYER EXAMINATION

- Retinal nerve fiber layer (RNFL) is composed of retinal ganglion cells and their axons.
- The loss of retinal ganglion cells can be visualized as localized or diffuse thinning of the RNFL.

GANGLION CELL COMPLEX ANALYSIS

- OCT retinal imaging technique that measures the thickness of the inner three retinal layers.
- Macular ganglion cell complex pattern parameters include IV, GLV, mean, superior, and inferior thickness.
- Highest diagnostic accuracy for early glaucoma is with global loss volume (GLV) parameter.

COLOR VISION

- Color vision abnormalities are not specific and can occur in a wide variety of neurologic and ophthalmologic diseases.
- Optic nerve disease.
- Loss of foveal function.
- Retinal dystrophies.
- Loss of chromatic discrimination in the dyschromatopsia of glaucoma is primarily Tritan (blue-yellow) in nature.
- Color contrast thresholds are also elevated in some patients with glaucoma.

ELECTRORETINOGRAPHY

- Electroretinography (ERG) testing evaluates the integrity of the retina.
- Every manufacturer of modern electrodiagnostic testing devices follows ISCEV standards for clinical electroretinography, but they also have their own specific testing protocols designed to detect glaucoma-induced functional abnormalities.
- ERG testing device measures the photopic negative response (PhNR) to evaluate the function of the innermost retinal layers and the ganglion cells.
- Abnormal test results can be a diagnostic marker for glaucoma.

Reporting Professional Services

<table>
<thead>
<tr>
<th>Description</th>
<th>CPT Code</th>
<th>Diagnosis Code</th>
<th>Approved Fees</th>
</tr>
</thead>
<tbody>
<tr>
<td>Eye Examination</td>
<td>92004</td>
<td>H40.013</td>
<td>$152.54</td>
</tr>
<tr>
<td>Refraction</td>
<td>92015</td>
<td>H40.013</td>
<td>19.22</td>
</tr>
<tr>
<td>OCT Retinal Imaging</td>
<td>92133</td>
<td>H40.013</td>
<td>43.65</td>
</tr>
<tr>
<td>Visual Field Exam</td>
<td>92083</td>
<td>H40.013</td>
<td>58.97</td>
</tr>
<tr>
<td>Color Vision Exam</td>
<td>92283</td>
<td>H53.52</td>
<td>43.23</td>
</tr>
<tr>
<td>Electroretinography</td>
<td>92273</td>
<td>H53.23</td>
<td>134.75</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>$423.87</td>
</tr>
</tbody>
</table>
SERIAL TONOMETRY

- This professional service may be used to assess diurnal variations of intraocular pressure when glaucoma is suspected.
- In patients without glaucoma, the normal diurnal curve is approximately 4 mm Hg.
- Serial tonometry may be helpful before beginning glaucoma treatment because it enables the optometrist to gain a better understanding of the patient’s circadian intraocular pressure measurements.
- Serial tonometry is not indicated in the routine follow-up of glaucoma and it should be an infrequent occurrence for any given patient and in any given office.
- Confirmatory measurement of a particular finding with the same or different tonometers, or with different personnel, does not constitute serial tonometry.
- Documentation requirements are at least three measurements of intraocular pressure over at least a six-hour time period.

VISUAL FIELD EXAMINATION

- 10-2 automated threshold testing pattern
 - 68 points two degrees apart
 - 5x as many test points in the central 10 degrees compared with 24-2 and 30-2 test patterns
 - 60 points tested in the macular region
 - Higher density of points tested in the macular region generally produces greater sensitivity in detecting central and paracentral scotomas that involve only a small area of the visual field at or near fixation
 - Benefits of central 10-2 visual field testing
 - Diagnose glaucoma earlier
 - Detect glaucoma progression sooner
 - More accurate assessment of visual field damage

GONIOSCOPY

- Determine the functioning status of the angle
- Determine the degree of closure of the angle
- Determine the risk of future closure of the iridocorneal angle

Gonioscopy Exam Results

- Normal iris configuration, open angles in all quadrants, no evidence of recent angle closure, no synchysis, no inflammatory deposits, no cysis, no excessive pigment, no neovascularization, no papilledema, or glaucomatous anterior chamber angle or outflow mechanism.

Table 1: Reporting Professional Services

<table>
<thead>
<tr>
<th>Description</th>
<th>CPT Code</th>
<th>Diagnosis Code</th>
<th>Approved Fees</th>
</tr>
</thead>
<tbody>
<tr>
<td>Serial Tonometry</td>
<td>92100</td>
<td>H40.013 (ocular hypertension)</td>
<td>$95.42</td>
</tr>
<tr>
<td>Visual Evoked Potential</td>
<td>95930</td>
<td>H47.333 (partial optic atrophy)</td>
<td>$72.35</td>
</tr>
<tr>
<td>Corneal Pachymetry</td>
<td>76514</td>
<td>H40.013 (ocular hypertension)</td>
<td>$13.22</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>$189.44</td>
</tr>
</tbody>
</table>

Table 2: Reporting Professional Services

<table>
<thead>
<tr>
<th>Description</th>
<th>CPT Code</th>
<th>Diagnosis Code</th>
<th>Approved Fees</th>
</tr>
</thead>
<tbody>
<tr>
<td>Eye Examination</td>
<td>92012</td>
<td>H40.1131 (glaucoma, mild stage)</td>
<td>$88.42</td>
</tr>
<tr>
<td>Gonioscopy</td>
<td>92020</td>
<td>H40.1131 (glaucoma, mild stage)</td>
<td>$20.37</td>
</tr>
<tr>
<td>Visual Field Exam</td>
<td>92083</td>
<td>H40.1131 (glaucoma, mild stage)</td>
<td>$58.97</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>$423.87</td>
</tr>
</tbody>
</table>
CASE REPORT #2

15-year-old Black male presents for an eye examination in 2015

- IOPs
 - OD = 26 mmHg
 - OS = 25 mmHg

Intraocular pressures over the previous six years:

2014
- OD = 22 mmHg
- OS = 26 mmHg

2013
- OD = 26 mmHg
- OS = 24 mmHg

2012
- OD = 19 mmHg
- OS = 20 mmHg

2011
- OD = 25 mmHg
- OS = 20 mmHg

2009
- OD = 24 mmHg
- OS = 23 mmHg

Family history is positive for glaucoma:

- Grandmother
- Great-grandmother

2015

 Inferior

2016

 Intraocular pressures

- OD = 28 mmHg
- OS = 31 mmHg

2017

 IOPs

- OD = 25
- OS = 25

Treatment Program Initiated:
Casopt BID – OU

RETINAL NERVE FIBER LAYER EXAMINATION
GANGLION CELL COMPLEX ANALYSIS

TREATMENT PROGRAM – 2017/2018

Two visits in February 2017 with patient and mother – initiate glaucoma treatment
- Patient is in denial and does not want to use eyedrops on a daily basis

Returns to Dallas from college in July 2017 – patient is noncompliant with the eyedrops
- IOPs: OD = 27 mmHg OS = 18 mmHg
Stress compliance – visit one month later before leaving Dallas for college
- IOPs: OD = 24 mmHg OS = 23 mmHg

Returns to Dallas from college in December 2017 – patient is noncompliant with the eyedrops – he says they “burn” too much
- Change medicine from Cosopt to Cosopt PF – stress compliance with treatment

Returns to Dallas from college in July 2018 – patient is noncompliant
- IOPs: OD = 24 mmHg OS = 25 mmHg
- Discontinue Cosopt PF and begin Vyzulta
COLOR VISION

- No dyschromatopsia of glaucoma

ELECTRORETINOGRAPHY

The ERG Waveform is Abnormal

- Peak time of the A-wave is delayed in both eyes
- PhNR value is abnormal in the left eye
- The W-ratio is an index of inner retinal function relative to outer retinal function

“RAGING” GLAUCOMA -- 8 YEARS LATER

- IOPs OD = 17
- OS = 22

Treatment Program
- Timoptic
- Ocudose
- Vyzulta

GANGLION CELL COMPLEX ANALYSIS

ELECTRORETINOGRAPHY

ERG Waveform is Abnormal

- Peak time of the b-wave is delayed in both eyes
- Amplitude of the a-wave is abnormal in the left eye
- W-ratio is abnormal in the left eye