

1

Create a number line

3

Answers on presentation

Some of the answers in this presentation are intentionally incorrect, so be prepared to defend your answers...

Objectives

- Optical Cross
- Put on the cross
- Take off the cross
- Transposition
- Plus cylinder
- Minus cylinder
- Spherical Equivalent
- Convert to near and intermediate Rx
- Decentration

4

Prescriptions: Optical Cross

Optical cross is a diagram that denotes the dioptric power in the two principal meridians of a lens.

Hint: Think of the value of the numbers as they are read off of the lensmeter wheel.

Optical Cross Steps

- Step 1 draw a number line \qquad
- Step 2 read the question (plus or minus cylinder)
- Start in the direction of the less power...document it
- Document the axis of this power
- Calculate the distance traveled from set number to termination

Optical Cross

- To take an RX off the Optical Cross in Minus Cylinder Form:
- Step 1 Start with the most plus sphere power (use your number line)
- Step 2 Your axis is "married" to your sphere
- Step 3 Your cylinder is the distance traveled between the sphere and number 90 degrees away

$\begin{array}{llllllllllllllllllll}10 & 9 & 8 & 7 & 6 & 5 & 4 & 3 & 2 & 1 & 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9\end{array} 10$

Prescriptions: Optical Cross

- Optical Cross Example

Plus cylinder notation: $+3.00+2.00 \times 090$
Minus cylinder notation:
$+5.00-2.00 \times 180$. The sphere is "married" to the axis; the cylinde is the distance between the numbers on the cross

Optical Cross

- To take an RX off the Optical Cross in Minus Cylinder Form:
- Step 1 Start with the most plus sphere power (use your number line)
- Step 2 Your axis is "married" to your sphere
- Step 3 Your cylinder is the distance traveled between the sphere and number 90 degrees away

Find the answers to the above equations

Put on the Cross

$$
\text { - -2.00-1.00 x } 080
$$

$-3.00-2.50 \times 107$

Axis Alignment

- Note: Optical meridians (axis) can only lie between 0 and 180 degrees.
- Example: The following prescription will be placed on the cross: -2.00 -1.50×180
- What is wrong with this SRx: $+2.25+1.50 \times 210$

Components of an Optical Prescription

- Axis
- The number in the axis block indicates where the sphere meridian is located on a 180° circle

1 Minute Optical Cross in minus

Find the answers to the above equations, you 1 minute

1 Minute Optical Cross in plus

To take an RX off the Optical Cross in Plus Cylinder Form:
Step 1 Start with the most plus sphere power (use your number line)
Step 2 Your axis is "married" to your sphere
Step 3 Your cylinder is the distance traveled between the sphere and number 90 degrees away

Find the answers to the above equations, you 1 minute

15

Prescriptions: Transposition

-Transposition -1.50-2.00 x 030

- Step 1 = Combine the sphere and cylinder power mathematically
- Step 2 = Change the sign of the cylinder
- Step 3 = Change the axis by 90 degrees

Hint: When combining positive and negative numbers, think in terms of money. Example: -2.00 combined with +0.50 If you are $\$ 2.00$ "in the hole" and you deposit $\$ 0.50$, what is your balance?
Answer: $\$ 1.50$ "in the hole", or -1.50.

Prescriptions: Transposition

- Transposition $-3.50+2.00 \times 120$
- Step 1 = Combine the sphere and cylinder power mathematically
- Step 2 = Change the sign of the cylinder
- Step 3 = Change the axis by 90 degrees

Hint: When combining positive and negative numbers, think in terms of money. Example: $\mathbf{- 2 . 0 0}$ combined with +0.50 If you are $\$ 2.00$ "in the hole" and you deposit $\$ 0.50$, what is your balance?
Answer: $\$ 1.50$ "in the hole", or -1.50.

Prescriptions: Transposition

- Transposition $+3.50-2.50 \times 030$
- Step 1 = Combine the sphere and cylinder powe mathematically
- Step 2 = Change the sign of the cylinder

Step 3 = Change the axis by 90 degrees

Hint: When combining positive and negative numbers think in terms of money. Example: -2.00 combined with +0.50 If you are $\$ 2.00$ "in the hole" and you deposit $\$ 0.50$, what is your balance?
Answer: $\$ 1.50$ "in the hole", or -1.50.

Spherical Equivalent

-Step 1
Take half the cylinder and add algebraically to sphere

- Step 2

Drop the cylinder and axis and write sphere only

EX. -2.00-0.50 X 145
 half the cylinder)= -0.25
 (add to sphere) $0.25+2.00$

Answer:
-2.25 Sph

Prescriptions: Transposition
$\cdot-1.00+2.00 \times 160$
$\bullet+1.25-0.75 \times 030$

- Plano +1.00 x 090

Transposition Examples

Transposition 1 Minute Drill

- Step 1 = Combine the sphere and cylinder power
mathematically
- Step 2 = Change the sign of the cylinder
- Step $3=$ Change the axis by 90 degrees
- $1 .+1.75-0.75 \times 030$
- 2. $-2.25+1.00 \times 170$
- 3. $-1.75+2.00 \times 125$

Spherical Equivalent 1 Minute drill

-Step 1

Take half the cylinder and add algebraically to sphere

- Step 2

Drop the cylinder and axis and write sphere only

$$
\begin{aligned}
& \text { 1. }-2.25-1.00 \times 120 \\
& \text { 2. }+1.00-2.00 \times 090 \\
& \text { 3. }+0.75-1.50 \times 150 \odot
\end{aligned}
$$

Convert to NV Only Rx

- Step 1
$-2.50-1.25 \times 125$
- Take the add power and -1.50-1.00 x 095 algebraically add it the sphere power of the Rx
- Rewrite the Rx with out any add power

Convert to IV + NV Rx

- Step 1	$-2.50-1.25 \times 125$
- Take the $1 / 2$ the add	$-1.50-1.00 \times 095$
power and algebraically	Add +2.50
add it the sphere power	
of the Rx	
- Rewrite the Rx with $1 / 2$	
the add power	
remaining in add for the	
Rx (used for reading)	
* Used with computers or	
intermediate work	

Convert to IN + Near Rx only 1 min drill
\(\left.\begin{array}{lc}- + 3.25-0.75 \times 125 \& - Step 1

- + 1.75-1.00 \times 090 \& - Add the add power to

- Add 2.50 \& the sphere power and

write it as the new

sphere power\end{array}\right\}\)| - $-4.50-1.50 \times 035$ | - Step 2 |
| :--- | :--- |
| - $-1.75-1.00 \times 150$ | Write the new complete |
| - Add 2.00 | Rx Sph, Cyl, and Axis |

Review Questions 3 minutes

- $-1.00-1.00 \times 090$ transpose

Answer $-2.00+1.00 \times 180$

- $0.50-2.00 \times 008$ transpose

Answer-2.50+2.00× 098
$-1.00-1.50 \times 160$ transpose
Answer-2.50 +1.50 070

- $5.00-3.00 \times 088$ transpose

Answer-8.00+3.00× 178

- $-3.00-1.50 \times 095$ transpose Answer $-4.50+1.50 \times 185$
- $2.50+1.50 \times 103$ transpose

Answer-0.75-1.50 $\times 013$
$-1.00+0.50 \times 162$ transpos Answer $+0.50-0.50 \times 072$
$+2.50+2.50 \times 103$ transpos Answer $+5.00-2.50 \times 013$

- $-2.50+1.00 \times 029$ transpose Answer - $1.50-1.00 \times 119$

Review Questions 1 minute drill

- Put the following Rx on the Optical Cross
$-2.00-1.00 \times 080$
$-3.00-2.50 \times 107$

Review Questions

- Put the following Rx on the Optical Cross
$-2.00-1.00 \times 080$
$-3.00-2.50 \times 107$

-2.00	090

-3.00	
-5.50	017

Review Questions 90 Seconds

- Give the spherical equivalent to the following prescripts
$-2.00-1.00 \times 080$
$-1.00-2.00 \times 010$
$+2.00-1.00 \times 030$
$-3.00-0.50 \times 070$
$+3.00-1.00 \times 060$

Answer - 2.50
Answer -2.00
Answer +1.50
Answer - 3.25
Answer +2.50

Review Questions 90 Seconds

- Give the spherical equivalent to the following prescripts
$-2.00-1.00 \times 080$
$-1.00-2.00 \times 010$
$+2.00-1.00 \times 030$
$-3.00-0.50 \times 070$
$+3.00-1.00 \times 060$

Answer
Answer
Answer
Answer
Answer

Review Questions

- Convert the following Rx to Near
Vision Only aka NVO, SVN,
reading glasses
$\begin{array}{ll}\cdot-2.00-1.00 \times 080 \\ --1.50-2.00 \times 180 & -4.00-0.25 \times 090 \\ -4.00 \\ -1.00-0.50 \times 098\end{array}$
$\cdot+3.00$ ou $\quad \cdot-1.00-0.50 \times$
- Answer
- $-1.00-0.0$
- $-2.00-0.0 .75 \times 100$
- +1.25 ou
- Answer \qquad -
$-1.00-0.50$
-+2.0000
Answer
- Answer
$\cdot+1.00-0.75 \times 180$
+2.25 ou
- Answer \qquad

Review Questions

-2.00-1.00 x 080	-4.00-0.25 $\times 090$
- $-1.50-2.00 \times 180$	-4.00-0.25 $-1.00-0.50 \times 098$
- +3.00 OU	+2.0000
- Answer +1.00-1.00 x080	- Answer-2.00-0.25 $\times 090$
- $+1.50-2.00 \times 180$	- $\quad+1.00-0.50 \times 098$
- $1.00-0.50 \times 010$	- +2.50-1.00 $\times 090$
- $-2.00-0.75 \times 100$	- $+1.00-0.75 \times 180$
- +1.25 Ou	- +2.25 ou
- Answer $+0.25-0.50 \times 010$	- Answer +5.00-1.00 $\times 090$
- $\quad-0.75-0.75 \times 100$	$+3.25+0.75 \times 180$

- $-2.00-1.00 \times 080$
- +3.00 ou
- $\begin{aligned} & \text { Answer }+1.00-1.00 \times 080 \\ & +1.50-2.00 \times 180\end{aligned}$
- $-1.00-0.50 \times 010$
- $-2.00-0.75 \times 100$
- Answer $+0.25-0.50 \times 010$
$-0.75-0.75 \times 100$
Answer $+3.25+0.75 \times 180$

Review Questions 1 minute drill

- Transpose the following Rx from plus cylinder form to minus cylinder form
- $-2.00+1.00 \times 090$

Answer

- $-1.00+3.00 \times 070$
- $-1.00+1.50 \times 010$
- Answer
- $-0.50+2.00 \times 145$
- $-3.00+2.00 \times 095$
- Answer

Review Questions 1 minute drill

- Transpose the following Rx from plus cylinder form to minus cylinder form
- $-2.00+1.00 \times 090$

Answer - $1.00-1.00 \times 180$

- $-1.00+3.00 \times 070$
- Answer $+2.00-3.00 \times 160$
$-1.00+1.50 \times 010$
- Answer $+0.50-1.50 \times 100$
- $-0.50+2.00 \times 145$
- Answer $+1.50-2.00 \times 055$
- $-3.00+2.00 \times 095$
- Answer $-1.00-2.00 \times 005$

Review Questions 1 minute drill

Convert the following prescription from minus cylinder to plus cylinder format
-1.00-1.00 090
Answer - $2.00+1.00 \times 180$

- $0.50-2.00 \times 008$

Answer $-2.50+2.00 \times 098$
$-1.00-1.50 \times 160$
Answer - $2.50+1.50 \times 070$
-5.00-3.00× 088
Answer - $8.00+3.00 \times 178$
-3.00-1.50 095
Answer - $4.50+1.50 \times 005$

Review Questions 1 minute drill

```
Convert the following prescription from minus cyinder to plus cylinder format
    -1.00-1.00 090
    -0.50-2.00\times008
    Answer
    -1.00-1.50\times160
    5.00-3.00\times 088
    Answer_
    -3.00-1.50 < 095
Answ
```

Prescriptions: Decentration

- Decentration calculations

- Eye size plus distance between lenses minus patient's PD divided by 2.
- Example: 52-20-145 pt PD 62
- $52+20-62=10 / 2=5$ (you have two eyes)

- Decentration calculations

- Eye size plus distance between lenses minus patient's PD divided by 2.
-1. 48-22-145 pt/pd 64
-2. 52-22-145 pt/pd 66
-3.58-20-140 pt/pd 67

Conversion - info section

- Feet to meters
- Multiply the denominator by 3
- Meters to feet
- Divide the denominator by 3
- Add a zero

Optometric Math

- MULTIPLICATION AND DIVISION OF LIKE AND UNLIKE SIGNS

- When Multiplying or dividing two numbers with like signs i.e., both plus (+) or both (-) the answer will always be a plus $(+)$ sign. This means that if you multiply or divide two plus (+) numbers you will get a plus (+) answer and if you multiply or divide two minus numbers you will get a plus (+) answer

Optometric Math

MULTIPLICATION OF DECIMALS. Decimals are multiplied exactly like whole numbers and then the decimal point is added. For example, you would multiply 25×25 in this way:

- DIVISION OF DECIMALS. Divisions may be written in the form
- $\underline{a}=$
- b or $\mathrm{a} / \mathrm{b}=\mathrm{c}$ or b / a where "a" is the DIVIDEND, "b" is the DIVISOR, and "c" is the QUOTIENT. As
with multiplication, you divide decimals exactly like you do whole numbers and then you find the decimal place. For example: dividing 126 by 6 gives 21 as an answer.

Optometric Math

- MULTIPLICATION AND DIVISION OF DECIMALS

A decimal number is just a whole number and a fraction written together in decimal form. Any multiplication or division by 10, 100, 1000, etc. simply moves the decimal place to the left or right. For example, multiplying a decimal by 10 would move the decimal point 1 place to the right
$7.75 \times 10=77.5$

Optometric Math

```
- METRIC SYSTEM
    The metric system is based on decimals. Changing from one unit to another requires only the 
    lol
•
- 10 decimeters (dm) = 1 meter
. 100 centimeters (cm) = 1 meter
- }1000\mathrm{ millimeters (mm) =1 meter
```


Converting inches into meters

- If you need a length, in inches, converted to centimeters or millimeters, first convert the inches to meters (divide by 40) then convert to the desired unit by moving the decimal place. Conversely, if you wish to convert from cm or mm to inches, then first convert to meters by moving the decimal and multiply by 40 to convert the meters to inches.

Optometric Math

Practice converting

Math Rules

- These two rules may be compiled into a table that should be memorized

$-+x+=+$	$-x+=-$
$--x-=+$	$-\div+=$
$-+\div+=+$	$-\div-=+$

Remember Metric

- When Converting	Move Decimal
- mm to cm	2 places right
- cm to mm	1 place right
- m to mm	3 places right
- mm to m	3 places left
- mm to cm	1 place left
- cm to m	2 places left

Optometric Math

- ALGEBRAIC ADDITION
- Algebraic addition is simply combining two or more numbers together. If you always think of algebraic addition in terms of dollars and cents you probably won't make any mistakes. It's really amazing that people who are terrible in math always seem to know their bank balance or how much change they should get back from a purchase. Throughout this section the examples will be explained mathematically and where possible, monetarily

52

